已知,曲线上任意一点分别与点、连线的斜率的乘积为.(Ⅰ)求曲线的方程;(Ⅱ)设直线与轴、轴分别交于、两点,若曲线与直线没有公共点,求证:.
选修4—1:几何证明选讲.已知圆内接△ABC中,D为BC上一点,且△ADC为正三角形,点E为BC的延长线上一点,AE为圆O的切线.(Ⅰ)求∠BAE 的度数;(Ⅱ)求证:
设函数,其中为自然对数的底数.(Ⅰ) 时,求曲线在点处的切线方程;(Ⅱ)函数是的导函数,求函数在区间上的最小值.
设到定点的距离和它到直线距离的比是.(Ⅰ)求点的轨迹方程;(Ⅱ)为坐标原点,斜率为的直线过点,且与点的轨迹交于点,,若,求△的面积.
在梯形中,,,,,如图把沿翻折,使得平面平面.(Ⅰ)求证:平面;(Ⅱ)若点为线段中点,求点到平面的距离.
已知某校四个社团的学生人数分别为10,5,20,15.现为了了解社团活动开展情况,用分层抽样的方法从四个社团的学生当中随机抽取10名学生参加问卷调查.(Ⅰ)从四个社团中各抽取多少人?(Ⅱ)在社团所抽取的学生总数中,任取2个,求社团中各有1名学生的概率.