已知.(Ⅰ)写出的最小正周期;(Ⅱ)若的图象关于直线对称,并且,求的值.
(本小题满分12分) 如图,在四棱锥P-ABCD中,PA底面ABCD,DAB为直角,AB∥CD,AD=CD=2AB,E、F分别为PC、CD的中点. (Ⅰ)试证:AB平面BEF; (Ⅱ)设PA=k·AB,若平面与平面的夹角大于,求k的取值范围.
(本小题满分12分) 某市举行一次数学新课程骨干培训,共邀请15名使用不同版本教材的教师,数据如下表所示:
(1)从这15名教师中随机选出2名,则2人恰好是教不同版本的男教师的概率是多少? (2)培训活动随机选出2名代表发言,设发言代表中使用人教B版的女教师人数为,求随机变量的分布列和数学期望.
(本小题满分12分) 设锐角三角形的内角的对边分别为,且. (Ⅰ)求的大小; (Ⅱ)求的取值范围.
(本小题满分10分)选修4—5:不等式选讲 已知函数, (Ⅰ)当时,解不等式; (Ⅱ)若存在,使得成立,求实数的取值范围.
(本小题满分10分)选修4—4:坐标系与参数方程 已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的x轴的正半轴重合.设点O为坐标原点, 直线(参数)与曲线的极坐标方程为 (Ⅰ)求直线l与曲线C的普通方程; (Ⅱ)设直线l与曲线C相交于A,B两点,证明:0.