(本小题14分)如图,在平面直角坐标系xoy中,设点F(0, p)(p>0), 直线l : y= -p, 点P在直线l上移动,R是线段PF与x轴的交点, 过R、P分别作直线、,使, .(1) 求动点的轨迹的方程;(2)在直线上任取一点做曲线的两条切线,设切点为、,求证:直线恒过一定点.
(本小题满分10)选修4—1:几何证明选讲 如图,C是以AB为直径的半圆O上的一点,过C的直线交直线AB于E,交过A点的切线于D,BC∥OD . (1)求证:DE是圆O的切线; (2)如果AD ="AB" = 2,求EB的长.
(本小题满分12分)已知函数(其中为常数且)在处取得极值. (I) 当时,求的单调区间; (II) 若在上的最大值为,求的值.
(本小题满分12分)已知分别为椭圆:()的左、右焦点, 且离心率为,点椭圆上。 (1)求椭圆的方程; (2)是否存在斜率为的直线与椭圆交于不同的两点,使直线与的倾斜角互补,且直线是否恒过定点,若存在,求出该定点的坐标;若不存在,说明理由.
(本小题满分12分)某市为了解全市居民日常用水量的分布情况,现采用抽样调查的方式,获得了n位居民某年的月均用水量(单位:t),样本统计结果如下图表:
(Ⅰ)分别求出x,n,y的值; (Ⅱ)若从样本中月均用水量在[5,6]内的5位居民a,b,c,d,e中任选2人作进一步的调查研究,求居民a被选中的概率.
(本小题满分12分)如图,在四棱锥中,底面是直角梯形,,,,,平面,. (1)求证:平面; (2)求证:平面; (3)若是的中点,求三棱锥的体积.