某校为培育青少年科技创新能力,举办了动漫制作活动,小明设计了点做圆周运动的一个雏形,如图所示,甲、乙两点分别从直径的两端点A、B以顺时针、逆时针的方向同时沿圆周运动,甲运动的路程l(cm)与时间t(s)满足关系:(t≥0),乙以4cm/s的速度匀速运动,半圆的长度为21cm.(1)甲运动4s后的路程是多少?(2)甲、乙从开始运动到第一次相遇时,它们运动了多少时间?(3)甲、乙从开始运动到第二次相遇时,它们运动了多少时间?
如图1,点A是线段BC上一点,△ABD和△ACE都是等边三角形.(1)连结BE,CD,求证:BE=CD;(2)如图2,将△ABD绕点A顺时针旋转得到△AB′D′.①当旋转角为多少度时,边AD′落在AE上;②在①的条件下,延长DD’交CE于点P,连接BD′,CD′.当线段AB、AC满足什么数量关系时,BD′与CD′相等?并给予证明.
如图所示,是的内接三角形,, 为中弧AB上一点,延长至点,使.(1)求证:;(2)若,求证:.
已知A、B、C是半径为2的圆O上的三个点,其中点A是弧BC的中点,连接AB、AC,点D、E分别在弦AB、AC上,且满足AD=CE.(1)求证:OD=OE;(2)连接BC,当BC=时,求∠DOE的度数.
如图所示,将正方形ABCD中的△ABD绕对称中心O旋转至△GEF的位置,EF交AB于M,GF交BD于N.请猜想AM与GN有怎样的数量关系?并证明你的结论.
王老师为学校购买某种篮球,体育用品商店老板给出了如下优惠条件:如果一次性购买不超过10个,单价为80元;如果一次性购买多于10个,那么每增加1个,购买的所有篮球的单价降低2元,但单价不得低于50元.按此优惠条件,王老师一次性购买这种篮球付了1200元.请问王老师购买了多少个这种篮球?