如图,在平面直角坐标系xOy中,一次函数y=kx+b与反比例函数的图象交于点A,与x轴交于点B,AC⊥x轴于点C,,AB=,OB=OC.(1)求反比例函数和一次函数的解析式;(2)若一次函数与反比例函数的图象的另一交点为D,作DE⊥y轴于点E,连接OD,求△DOE的面积.
(·辽宁葫芦岛)如图,小岛A在港口B的北偏东50°方向,小岛C在港口B的北偏西25°方向,一艘轮船以每小时20海里的速度从港口B出发向小岛A航行,经过5小时到达小岛A,这时测得小岛C在小岛A的北偏西70°方向,求小岛A距离小岛C有多少海里?(最后结果精确到1海里,参考数据:≈1.414,≈1.732)
(·黑龙江绥化)如图,已知抛物线y=ax2+bx+c与x轴交于点A、B,与直线AC:y=-x-6交y轴于点C、D,点D是抛物线的顶点,且横坐标为-2. (1)求出抛物线的解析式。 (2)判断△ACD的形状,并说明理由。 (3)直线AD交y轴于点F,在线段AD上是否存在一点P,使∠ADC=∠PCF .若存在,直接写出点P的坐标;若不存在,说明理由。
(·黑龙江绥化)如图1,在正方形ABCD中,延长BC至M,使BM=DN,连接MN交BD延长线于点E. (1)求证:BD+2DE=BM . (2)如图2,连接BN交AD于点F,连接MF交BD于点G.若AF:FD=1:2,且CM=2,则线段DG=_______.
(·辽宁营口)如图1,一条抛物线与轴交于A,B两点(点A在点B的左侧),与轴交于点C,且当x=-1和x=3时,的值相等.直线与抛物线有两个交点,其中一个交点的横坐标是6,另一个交点是这条抛物线的顶点M. (1)求这条抛物线的表达式. (2)动点P从原点O出发,在线段OB上以每秒1个单位长度的速度向点B运动,同时动点Q从点B出发,在线段BC上以每秒2个单位长度的速度向点C运动,当一个点到达终点时,另一个点立即停止运动,设运动时间为秒. ①若使△BPQ为直角三角形,请求出所有符合条件的值; ②求为何值时,四边形ACQ P的面积有最小值,最小值是多少? (3)如图2,当动点P运动到OB的中点时,过点P作PD⊥轴,交抛物线于点D,连接OD,OM,MD得△ODM,将△OPD沿轴向左平移个单位长度(),将平移后的三角形与△ODM重叠部分的面积记为,求与的函数关系式.