如图,已知矩形中,为的中点,沿将三角形折起,使.(Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值.
编号为的16名篮球运动员在某次训练比赛中的得分记录如下:
(Ⅰ)将得分在对应区间内的人数填入相应的空格;
(Ⅱ)从得分在区间内的运动员中随机抽取2人, (i)用运动员的编号列出所有可能的抽取结果; (ii)求这2人得分之和大于50的概率.
已知函数. (Ⅰ)求的值; (Ⅱ)若数列{,,求数列{的通项公式; (Ⅲ)若数列{满足是数列{的前n项和,是否存在正实数k,使不等式对于一切的恒成立?若存在,请求出k的取值范围;若不存在,请说明理由.
已知数列满足:,.数列的前n项和为,. (1)求数列,的通项公式; (2)设,.求数列的前项和.
2009年推出一款新型家用轿车,购买时费用为14.4万元,每年应交付保险费、 养路费及汽油费共0.7万元,汽车的维修费为:第一年无维修费用,第二年为0.2万元,从第三年起,每年的维修费均比上一年增加0.2万元. (1)设该辆轿车使用n年的总费用(包括购买费用、保险费、养路费、汽油费及维修费)为f(n),求f(n)的表达式; (2)这种汽车使用多少年报废最合算(即该车使用多少年,年平均费用最少)?
设向量a=(4cosα,sinα),b=(sinβ,4cosβ),c=(cosβ,-4sinβ), (1)若a与b-2c垂直,求tan(α+β)的值; (2)求|b+c|的最大值.