如图,一块边长为8米的正方形土地,在上面修了三条道路,宽都是1米,空白的部分种上各种花草.(1)请利用平移的知识求出种花草的面积.(2)若空白的部分种植花草共花费了4620元,则每平方米种植花草的费用是多少元?
如图,在△ABC中,AD平分∠BAC. (1)若AC=BC,∠B:∠C=2:1,试写出图中的所有等腰三角形,并给予证明. (2)若AB+BD=AC,求∠B:∠C的比值.
一个安装了两个进水管和一个出水管的容器,每分钟的进水量和出水量是两个常数,且两个进水管的进水速度相同.进水管和出水管的进出水速度如图1所示,某时刻开始到6分钟(至少打开一个水管),该容器的水量y(单位:升)与时间x如图2所示. (1)试判断0到1分、1分到4分、4分到6分这三个时间段的进水管和出水管打开的情况. (2)求4≤x≤6时,y随x变化的函数关系式. (3)6分钟后,若同时打开两个水管,则10分钟时容器的水量是多少升?
已知:如图,AB=AC,点D是BC的中点,AB平分∠DAE,AE⊥BE,垂足为E. (1)求证:AD=AE. (2)若BE∥AC,试判断△ABC的形状,并说明理由.
(1)已知2x+1的平方根为±5,求5x+4的立方根. (2)已知x+y的算术平方根是3,(x-y)2=9,求xy的值.
已知点P(x,y)是第一象限内的一个动点,且满足x+y=4.请先在所给的平面直角坐标系中画出函数y=2x+1的图象,该图象与x轴交于点A,然后解答下列问题: (1)利用所画图象,求当-1≤y≤3时x的取值范围; (2)若点P正好也在直线y=2x+1上,求点P的坐标; (3)设△OPA的面积为S,求S关于点P的横坐标x的函数解析式.