已知:是一元二次方程的两个实数根.求:的值.考点:实数的运算;零指数幂;负整数指数幂.专题:计算题.分析:分别根据负整数指数幂、0指数幂、绝对值的性质及二次根式的化简计算出各数,再根据实数混合运算的法则进行计算即可.解答:解:原式=2-1-3+2, =0.故答案为:0.点评:本题考查的是实数的运算,熟知负整数指数幂、0指数幂、绝对值的性质及二次根式的化简是解答此题的关键.答题:ZJX老师
已知:E、F是矩形ABCD的对角线AC上的两点,且AE=CF=,连接DE并延长交AB于M,连接BF交CD于N,(1)求证:四边形BMDN是平行四边形;(2)当四边形BMDN是菱形时,求的值.
在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.(1)当点C1在线段CA的延长线上时,如图1,求∠CC1A1的度数;(2)如图2,△ABC绕点B按逆时针方向旋转,连接AA1,CC1,若△ABA1的面积为4,求△CBC1的面积;(3)点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.
新定义:若x0=ax02+bx0+c成立,则称点(x0,x0)为抛物线y=ax2+bx+c (a≠0)上的不动点.设抛物线C的解析式为:y=ax2+(b+1)x+(b -1)(a≠0).(1)抛物线C过点(0,-3);如果把抛物线C向左平移个单位后其顶点恰好在y轴上,求抛物线C的解析式及其上的不动点;(2)对于任意实数b,实数a应在什么范围内,才能使抛物线C上总有两个不同的不动点? (3)设a为整数,且满足a+b+1=0,若抛物线C与x轴两交点的横坐标分别为x1, x2,是否存在整数k,使得成立?若存在,求出k的值;若不存在,请说明理由.
某玩具由一个圆形区域和一个扇形区域组成,如图,在⊙O1和扇形O2CD中,⊙O1与O2C、O2D分别相切于A、B,∠CO2D=60°,直线O1O2与⊙O1、扇形O2CD分别交于E、F两个点,EF=24cm,设⊙O1的半径为xcm,(1)用含x的代数式表示扇形O2CD的半径;(2)若⊙O1和扇形O2CD两个区域的制作成本分别为0.45元/cm2和0.06/cm2元,当⊙O1的半径为多少时,该玩具成本最小?
某城镇学校对学生吃早餐的情况进行抽样调查,并把调查结果绘制成如下统计图(学生吃早餐情况分为天天吃、很少不吃、很少吃、不吃四种,在下图中这四种情况的名称分别用符号A、B、C、D代替).(1)这次抽样调查有 人;(2)某班有50名学生,估计这个班很少不吃早餐的学生人数;(3)若该校有3600名学生,估计这个学校带到教室里吃早餐的人数,并说说你对这种现象的一点看法(不超过20个字);(4)在A、B、C、D四种情况中各挑一名学生分别做体能测试;由甲,乙两位老师先后对这四位学生随机抽检;有同学认为,如果甲先抽,那么他抽到“很少吃”这人的概率会大些,你同意这种说法吗?请用树状图或列表法加以说明.