设是定义在的可导函数,且不恒为0,记.若对定义域内的每一个,总有,则称为“阶负函数”;若对定义域内的每一个,总有,则称为“阶不减函数”(为函数的导函数).(1)若既是“1阶负函数”,又是“1阶不减函数”,求实数的取值范围;(2)对任给的“2阶不减函数”,如果存在常数,使得恒成立,试判断是否为“2阶负函数”?并说明理由.
一个盒子中装有分别标有数字1、2、3、4的4个大小、形状完全相同的小球,现从中有放回地随机抽取2个小球,抽取的球的编号分别记为、,记.(Ⅰ)求取最大值的概率;(Ⅱ)求的分布列及数学期望.
已知抛物线,点P(-1,0)是其准线与轴的焦点,过P的直线与抛物线C交于A、B两点.(1)当线段AB的中点在直线上时,求直线的方程;(2)设F为抛物线C的焦点,当A为线段PB中点时,求△FAB的面积.
四棱锥中,底面为平行四边形,侧面底面.已知,,,.(Ⅰ)证明;(Ⅱ)求直线与平面所成角的正弦值.
已知函数(Ⅰ)若,求的极大值;(Ⅱ)若在定义域内单调递减,求满足此条件的实数k的取值范围.
已知的三个内角所对的边分别为,是锐角,且.(Ⅰ)求的度数;(Ⅱ)若,的面积为,求的值.