已知曲线的极坐标方程是,直线的参数方程是(为参数).(I)将曲线的极坐标方程转化为直角坐标方程;(Ⅱ)设直线与轴的交点是为曲线上一动点,求的最大值.
(本小题满分12分)在中,已知. (Ⅰ)求sinA与角B的值; (Ⅱ)若角A,B,C的对边分别为的值.[
(本小题满分14分)已知函数. (Ⅰ)求函数的单调递减区间; (Ⅱ)若关于x的不等式恒成立,求整数a的最小值; (Ⅲ)若正实数满足,证明.
(本小题满分13分)已知抛物线的焦点为,过点F作直线l交抛物线C于A,B两点.椭圆E的中心在原点,焦点在x轴上,点F是它的一个顶点,且其离心率. (Ⅰ)分别求抛物线C和椭圆E的方程; (Ⅱ)经过A,B两点分别作抛物线C的切线,切线相交于点M.证明; (Ⅲ)椭圆E上是否存在一点,经过点作抛物线C的两条切线(为切点),使得直线过点F?若存在,求出抛物线C与切线所围成图形的面积;若不存在,试说明理由.
(本小题满分12分)已知数列的前项和为. (Ⅰ)求数列的通项公式; (Ⅱ)设集合,等差数列的任一项,其中是中的最小数,,求数列的通项公式.
(本小题满分12分)甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2,3,4,乙袋中红色、黑色、白色小球的个数均为3,某人用左右手分别从甲、乙两袋中取球. (Ⅰ)若左右手各取一球,求两只手中所取的球颜色不同的概率; (Ⅱ)若左右手依次各取两球,称同一手中 两球颜色相同的取法为成功取法,记两次取球(左右手依次各取两球为两次取球)的成功取法次数为随机变量X,求X的分布列和数学期望.