如图,在三棱柱 A B C - A 1 B 1 C 1 中,侧棱 A A 1 ⊥ 底面 A B C , A B = A C = 2 A A 1 , ∠ B A C = 120°, D , D 1 分别是线段 B C , B 1 C 1 的中点, P 是线段 A D 的中点.
(I)在平面 A B C 内,试做出过点 P 与平面 A 1 B C 平行的直线 l ,说明理由,并证明直线 l ⊥ 平面 A D D 1 A 1 ; (II)设(I)中的直线 l 交 A B 于点 M ,交 A C 于点 N ,求二面角 A - A 1 M - N 的余弦值.
(本题满分10分)已知集合,求.
.如图,直三棱柱ABC-A1B1C1中,AB⊥AC, D、E分别为AA1、B1C的中点,DE⊥平面BCC1 (Ⅰ)证明:AB=AC; (Ⅱ)设二面角A-BD-C为60°,求B1C与平面BCD所成的角的大小.
已知的内接△ABC中,点A的坐标是(-3,0),重心G的坐标是,求:(1)直线BC的方程;(2)弦BC的长度.
已知圆C同时满足下列三个条件:①与y轴相切;②在直线上截得弦长为2;③圆心在直线上,求圆C的方程.
如图,垂直于矩形所在的平面,分别是的中点. (I)求证:平面; (Ⅱ)求证:平面平面.