如图,在三棱柱 A B C - A 1 B 1 C 1 中,侧棱 A A 1 ⊥ 底面 A B C , A B = A C = 2 A A 1 , ∠ B A C = 120°, D , D 1 分别是线段 B C , B 1 C 1 的中点, P 是线段 A D 的中点.
(I)在平面 A B C 内,试做出过点 P 与平面 A 1 B C 平行的直线 l ,说明理由,并证明直线 l ⊥ 平面 A D D 1 A 1 ; (II)设(I)中的直线 l 交 A B 于点 M ,交 A C 于点 N ,求二面角 A - A 1 M - N 的余弦值.
2012年3月2日,江苏卫视推出全新益智答题类节目《一站到底》,甲、乙两人报名参加《一站到底》面试的初试选拔,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次抢答都从备选题中随机抽出3题进行测试,至少答对2题初试才能通过. (Ⅰ)求甲答对试题数ξ的概率分布及数学期望; (Ⅱ)求甲、乙两人至少有一人初试通过的概率.
已知的展开式中,某一项的系数是它前一项系数的2倍,而又等于它后一项系数的 (Ⅰ)求展开后所有项的系数之和及所有项的二项式系数之和; (Ⅱ)求展开式中的有理项.
(1)在极坐标系中,已知圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,求实数a的值. (2)对5副不同的手套进行不放回抽取,甲先任取一只,乙再任取一只,然后甲又任取一只,最后乙再任取一只.对于下列事件:①A:甲正好取得两只配对手套;②B:乙正好取得两只配对手套.试判断事件A与B是否独立?并证明你的结论.
已知△ABC中,A(2,4),B(-1,-2),C(4,3),BC边上的高为AD. ⑴求证:AB⊥AC; ⑵求点D与向量的坐标.
已知函数的最大值为,最小值为. (1)求的值; (2)求函数的最小值并求出对应x的集合.