在 △ A B C 中,角 A , B , C 的对边分别 a , b , c ,且 2 cos 2 A - B 2 cos B - sin ( A - B ) sin B + cos ( A + C ) = - 3 5 . (1)求 cos A 的值; (2)若 a = 4 2 , b = 5 ,求向量 B A → 在 B C → 方向上的投影.
等差数列{an}中,公差d≠0,a2是a1与a4的等比中项,已知数列a1,a3,ak, ak,…, ak,…成等比数列. (1)求数列{kn}的通项kn; (2)求数列的前n项和Sn.
已知数列{an}满足2an+1=an+an+2 (n∈N*),它的前n项和为Sn,且a3=10,S6=72.若bn=an-30,求数列{bn}的前n项和的最小值.
数列{an}是首项a1=4的等比数列,且S3,S2,S4成等差数列. (1)求数列{an}的通项公式; (2)设bn=log2|an|,Tn为数列的前n项和,求Tn.
已知数列{an}的前n项和为Sn,且a1=1,nan+1=(n+2)Sn (n∈N*). (1)求证:数列为等比数列; (2)求数列{an}的通项公式及前n项和Sn; (3)若数列{bn}满足:b1=,=(n∈N*),求数列{bn}的通项公式.
已知Sn是数列{an}的前n项和,且an=Sn-1+2(n≥2),a1=2. (1)求数列{an}的通项公式; (2)设bn=,Tn=bn+1+bn+2+…+b2n,是否存在最大的正整数k,使得对于任意的正整数n,有Tn>恒成立?若存在,求出k的值;若不存在,说明理由.