已知函数,其中.(Ⅰ)当时,求曲线在点处的切线方程;(Ⅱ)求的单调区间.
如图一,平面四边形ABCD关于直线AC对称,,,。 把沿BD折起(如图二),使二面角A-BD-C的余弦值等于。对于图二, (1)求的长,并证明:平面; (2)求直线与平面所成角的正弦值。
数列的前项和为,,,等差数列满足,。 (1)分别求数列,的通项公式; (2)若对任意的,恒成立,求实数的取值范围。
在中,角所对的边分别为,且满足。 (1)求的值; (2)若点在双曲线上,求的值
(本小题满分14分) 已知函数. (Ⅰ)若,求曲线在处切线的斜率; (Ⅱ)求的单调区间; (Ⅲ)设,若对任意,均存在,使得,求的取值范围.
(本小题满分12分) 某种型号的汽车在匀速行驶中每小时耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:已知甲、乙两地相距100千米。 (Ⅰ)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升? (Ⅱ)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?