设满足数列是公差为,首项的等差数列; 数列是公比为首项的等比数列,求证: 。
(12)设焦点在轴上的双曲线渐近线方程为,且离心率为2,已知点A()(1)求双曲线的标准方程;(2)过点A的直线L交双曲线于M,N两点,点A为线段MN的中点,求直线L方程。
函数,过曲线上的点的切线斜率为3.(1)若在时有极值,求f (x)的表达式;(2)在(1)的条件下,求在上最大值;
设p: 实数,q:实数满足,且的必要不充分条件,求的取值范围。
已知点在以坐标轴为对称轴的椭圆上,点到两焦点的距离分别为4和2,过点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程.
如图,已知的三边长分别为,以点为圆心,为半径作一个圆.(1) 求的面积;(2)设为的任意一条直径,记,求的最大值和最小值,并说明当取最大值和最小值时,的位置特征是什么?