是等边三角形,D是射线BC上的一个动点(与点B、C不重合),是以AD为边的等边三角形,过点E作,交射线AC于点F,连结BE.(1)如图,当点D在线段BC上运动时。①求证:;②探究四边形BCFE是怎样的四边形?并说明理由;(2)如图,当点D在线段BC的延长线上运动时,请直接写出(1)的两个结论是否依然成立;(3)在(2)的情况下,当点D运动到什么位置时,四边形BCFE是菱形?并说明理由。
如图,已知直线分别交轴、轴于A、B两点,抛物线经过A、B两点,点C是抛物线与轴的另一个交点(与A点不重合)(1)求抛物线的解析式;(2)求△ABC的面积;(3)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标。
某商场要经营一种新上市的文具,进价为20元/件。试营销阶段发现:当销售单价是25元时,每天的销售量为250件;销售单价每上涨1元,每天的销售数量就减少10件。(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大.
为落实“两免一补”政策,腾冲县2013年投入教育经费2500万元,预计2015年投入教育经费3600万元,已知2013年到2015年的教育经费投入以相同的百分率逐年增长。(1)求每年的平均增长率。(2)按该平均增长率请你帮计算一下2016年腾冲县投入的教育经费为多少万元?
如图,在⊙O中,OM⊥AB于M,ON⊥CD于N,且OM=ON,求证AB=CD。
已知关于的方程。(1)求证:方程恒有两个不相等的实数根。(2)若此方程的一个根为1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长。