已知集合, (1)若,求实数a的值; (2)若求实数a的取值范围.
已知各项均为正数的等比数列{an}的公比为q,且0<q<.(1)在数列{an}中是否存在三项,使其成等差数列?说明理由;(2)若a1=1,且对任意正整数k,ak-(ak+1+ak+2)仍是该数列中的某一项.(ⅰ)求公比q;(ⅱ)若bn=-logan+1(+1),Sn=b1+b2+…+bn,Tr=S1+S2+…+Sn,试用S2011表示T2011.
设C1、C2、…、Cn、…是坐标平面上的一列圆,它们的圆心都在轴的正半轴上,且都与直线y=x相切,对每一个正整数n,圆Cn都与圆Cn+1相互外切,以rn表示Cn的半径,已知{rn}为递增数列.(1)证明:{rn}为等比数列;(2)设r1=1,求数列的前n项和.
水土流失是我国西部大开发中最突出的问题,全国9100万亩坡度为25°以上的坡耕地需退耕还林,其中西部占70%,2002年国家确定在西部地区退耕还林面积为515万亩,以后每年退耕土地面积递增12%.(1)试问,从2002年起到哪一年西部地区基本上解决退耕还林问题?(2)为支持退耕还林工作,国家财政补助农民每亩300斤粮食,每斤粮食按0.7元计算,并且每亩退耕地每年补助20元,试问到西部地区基本解决退耕还林问题时,国家财政共需支付约多少亿元?
某化工企业2007年底投入100万元,购入一套污水处理设备.该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.(1)求该企业使用该设备x年的年平均污水处理费用y(万元);(2)为使该企业的年平均污水处理费用最低,该企业几年后需要重新更换新的污水处理设备?
已知等差数列{an}是递增数列,且满足a4·a7=15,a3+a8=8.(1)求数列{an}的通项公式;(2)令bn=(n≥2),b1=,求数列{bn}的前n项和Sn.