已知集合, (1)若,求实数a的值; (2)若求实数a的取值范围.
已知等差数列是递增数列,且满 (1)求数列的通项公式; (2)令,求数列的前项和
已知函数. (1)求的值; (2)求的最大值及相应的值.
已知(m为常数,m>0且m≠1). 设(n∈)是首项为m2,公比为m的等比数列. (1)求证:数列是等差数列; (2)若,且数列的前n项和为Sn,当m=2时,求Sn; (3)若,问是否存在m,使得数列中每一项恒小于它后面的项?若存在,求出m的范围;若不存在,请说明理由.
已知椭圆的一个顶点为A(0,-1),焦点在x轴上,若右焦点到直线的距离为3。 (1)求椭圆的方程; (2)设直线与椭圆相交于不同的两点M,N,当|AM|=|AN|时,求m的取值范围.
已知函数 (1)若的图象在点处的切线方程为,求在区间上的最大值; (2)当时,若在区间上不单调,求的取值范围.