设C1、C2、…、Cn、…是坐标平面上的一列圆,它们的圆心都在轴的正半轴上,且都与直线y=x相切,对每一个正整数n,圆Cn都与圆Cn+1相互外切,以rn表示Cn的半径,已知{rn}为递增数列.(1)证明:{rn}为等比数列;(2)设r1=1,求数列的前n项和.
.(本题满分12分) 如图所示,⊥矩形所在的平面,分别是、的中点, (1)求证:∥平面; (2)求证:⊥; (3)若,求证:平面⊥平面.
(本小题满分12分) 已知函数. (1)判断其奇偶性; (2)指出该函数在区间(0,1)上的单调性并证明; (3)利用(1)、(2)的结论,指出该函数在(-1,0)上的增减性.
(本小题满分12分) 已知两直线:和:, (1)若与交于点,求的值; (2)若,试确定需要满足的条件; (3)若l1⊥l2 ,试确定需要满足的条件.
(本小题满分10分) 如图所示的一个三视图中,右面是一个长方体截去一角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm) (1)在正视图下面,按照画三视图的要求画出该多面体的俯视图; (2)按照给出的尺寸,求该多面体的体积;
(本小题满分10分) 甲、乙、丙三名射击运动员射中目标的概率分别为,三人各射击一次,击中目标的次数记为. (1)求的分布列及数学期望; (2)在概率(=0,1,2,3)中, 若的值最大, 求实数的取值范围.