已知圆C经过P(4,-2),Q(-1,3)两点,且在y轴上截得的线段长为4,半径小于5.(Ⅰ)求直线PQ与圆C的方程;(Ⅱ)若直线l∥PQ,直线l与圆C交于点A,B且以线段AB为直径的圆经过坐标原点,求直线l的方程.
如图,在边长为1的正六边形ABCDEF中,其中心为点O. (1)在正六边形ABCDEF的边上任取一点P,求满足在上的投影大于的概率; (2)从A,B,C,D,E,F这六个点中随机选取两个点,记这两个点之间的距离为,求大于等于的概率.
已知向量,函数图像的一条对称轴与其最近的一个对称中心的距离为. (1)求的解析式; (2)在中,分别是角A,B,C的对边, 且,求边的值.
(本小题满分10分)选修4—5,不等式选讲 已知函数 (1) 解关于的不等式 (2)若不等式恒成立,求实数的取值范围;
(本小题满分10分)选修4—4:坐标系与参数方程 在平面直角坐标系中,直线的参数方程为(为参数),在极坐标系(与直角坐标系取相同的单位长度,且以原点为极点,以轴正半轴 为极轴)中,圆的方程为. (1)求圆的直角坐标方程; (2)设圆与直线交于两点,若点坐标为,求.
(本小题满分12分)设函数. (1)若函数在处有极值,求函数的最大值; (2)①是否存在实数,使得关于的不等式在上恒成立?若存在, 求出的取值范围;若不存在,说明理由; ②证明:不等式.