计算:
已知四边形ABCD和四边形CEFG都是正方形 ,且AB>CE.(1)如图1,连接BG、DE.求证:BG=DE;(2)如图2,如果正方形ABCD的边长为,将正方形CEFG绕着点C旋转到某一位置时恰好使得CG//BD,BG=BD.①求的度数;②请直接写出正方形CEFG的边长的值.
已知抛物线().(1)求抛物线与轴的交点坐标;(2)若抛物线与轴的两个交点之间的距离为2,求的值;(3)若一次函数的图象与抛物线始终只有一个公共点,求一次函数的解析式.
晓东在解一元二次方程时,发现有这样一种解法:如:解方程.解:原方程可变形,得.,,.直接开平方并整理,得.我们称晓东这种解法为“平均数法”. (1)下面是晓东用“平均数法”解方程时写的解题过程.解:原方程可变形,得.,.直接开平方并整理,得 ¤.上述过程中的“”,“” ,“☆”,“¤”表示的数分别为_____,_____,_____,_____.(2)请用“平均数法”解方程:.
已知二次函数.(1)若点与在此二次函数的图象上,则 (填 “>”、“=”或“<”);(2)如图,此二次函数的图象经过点,正方形ABCD的顶点C、D在x轴上, A、B恰好在二次函数的图象上,求图中阴影部分的面积之和.
如图,AB为O的直径,射线AP交O于C点,∠PCO的平分线交O于D点,过点D作交AP于E点.(1)求证:DE为O的切线;(2)若,,求直径的长.