某联欢晚会举行抽奖活动,举办方设置了甲.乙两种抽奖方案,方案甲的中奖率为,中将可以获得2分;方案乙的中奖率为,中将可以得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中将与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为,求的概率;(2)若小明.小红两人都选择方案甲或方案乙进行抽奖,问:他们选择何种方案抽奖,累计的得分的数学期望较大?
已知二次函数 (1)若,求实数b,c的值; (2)若求实数的取值范围.
运货卡车以每小时千米的速度匀速行驶130千米(单位:千米/小时).假设汽油的价格是每升6元,而汽车每小时耗油升,司机的工资是每小时30元. (1)求这次行车总费用关于的表达式; (2)当为何值时,这次行车的总费用最低,并求出最低费用的值.
已知在△ABC中, a、b、c分别为角A、B、C的对边,且 (1)若,试判断△ABC的形状; (2)若a=,b+c=3,求b和c的值.
数列中,,, (1)若数列为公差为11的等差数列,求 (2)若数列为以为首项的等比数列,求数列的前m项和
在中,角、、的对边分别为、、,, 解此三角形.