在△中,角A,B,C的对边分别为,且(1)求角B的大小;(2)若且,求的取值范围.
在中,角的对边分别为,,,向量,向量,且; (1)求角的大小; (2)设中点为,且;求的最大值及此时的面积.
已知函数. (1)若时,恒成立,求的取值范围; (2)若时,函数在实数集上有最小值,求实数的取值范围.
已知数列的前项和为,且,,其中 (1)求数列的通项公式; (2)若,数列的前项和为,求证:.
已知椭圆()经过点,离心率为,动点(). (1)求椭圆的标准方程; (2)求以(为坐标原点)为直径且被直线截得的弦长为的圆的方程; (3)设是椭圆的右焦点,过点作的垂线与以为直径的圆交于点,证明线段的长为定值,并求出这个定值.
在四棱锥中,,,平面,直线与平面所成角为,. (1)求四棱锥的体积; (2)若为的中点,求证:平面平面.