已知四棱锥中,侧棱底面,且底面是边长为2的正方形,,与相交于点.(I)证明:;(II)求三棱锥的体积.
已知命题,命题(),且是的必要不充分条件,求实数的取值范围.
(本题满分14分)已知函数(为常数)是上的奇函数, 函数是区间 上的减函数. (1)求的值; (2)若上恒成立,求的取值范围; (3)讨论关于的方程的根的个数.
已知三次函数的导函数,,,为实数。 (1)若曲线在点(,)处切线的斜率为,求的值; (2)若在区间上的最小值、最大值分别为,且,求函数解析式。
已知函数满足,其中且. (1)对于函数,当时,,求实数的取值集合; (2)当时,恒成立,求的取值范围.
已知的极坐标方程为,分别为在直角坐标系中与轴、轴的交点,曲线的参数方程为(为参数,且),为的中点,求:过(为坐标原点)的直线与曲线所围成的封闭图形的面积。