某市举行一次数学新课程骨干培训活动,共邀请15名使用不同版本教材的数学教师,具体情况数据如下表所示:
现从这15名教师中随机选出2名,则2人恰好是教不同版本的女教师的概率是.且.(1)求实数,的值(2)培训活动现随机选出2名代表发言,设发言代表中使用人教B版的女教师人数为,求随机变量的分布列和数学期望.
((本小题满分13分)已知函数,设。(1)试确定的取值范围,使得函数在上为单调函数;(2)试判断、的大小并说明理由;(3)求证:对于任意的,总存在,满足,并确定这样的的个数。
((本小题满分12分)设椭圆的焦点分别为,直线交轴于于点A,且。(1)试求椭圆的方程;(2)过、分别作互相垂直的两直线与椭圆分别交于D、E、M、N四点(如图所示),若四边形 DMEN的面积为,求DE的直线方程。
((本小题满分12分)如图,直三棱柱中,AB⊥BC,D为AC的中点,。(1)求证:∥平面;(2)若四棱柱的体积为2,求二面角的正切值。
(本小题满分12分)在3.11日本大地震后对福岛核电站的抢险过程中,海上自卫队准备用射击的方法引爆从海上漂流过来的一个大型汽油罐,已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆,每次射击是相互独立的,且命中的概率都是。(1)求油罐被引爆的概率;(2)如果引爆或子弹打光则停止射击,设射击次数为,求的分布列及(结果用分数表 示)。
(本小题满分12分)已知向量。(1)若,求的值;(2)在△ABC中,角A、B、C的对边分别是a、b、c,且满足,求函数的取值范围。