((本小题满分12分)设椭圆的焦点分别为,直线交轴于于点A,且。(1)试求椭圆的方程;(2)过、分别作互相垂直的两直线与椭圆分别交于D、E、M、N四点(如图所示),若四边形 DMEN的面积为,求DE的直线方程。
某突发事件,在不采取任何预防措施的情况下发生的概率为,一旦发生,将造成某公司300万元的损失.现有甲、乙两种相互独立的预防措施可供选择,单独采用甲、乙预防措施所需的费用分别为40万元和20万元,采用相应预防措施后此突发事件不发生的概率分别为和.若预防方案允许甲、乙两种预防措施单独采用、同时采用或都不采用,请分别计算这几种预防方案的总费用,并指出哪一种预防方案总费用最少.(注:总费用 = 采取预防措施的费用+发生突发事件损失的期望值)
随机变量的分布列如下表所示:
(1)求的值以及;(2)求的数学期望.
本题满分12分)某农科所对冬季昼夜温差与某反季节大豆种子发芽多少之间的关系进行分析研究,他们记录了12月1日至5日的昼夜温差与每天100颗种子的发芽数,数据如下表:
该农科所确定的研究方案是:先从五组数据中选取两组,用剩下的3组数据求线性回归方程,再用被选取的两组数据进行检验. (1) 若先选取的是12月1日和5日的数据,请根据2日至4日的三组数据,求关于的线性回归方程; (2) 若由回归方程得到的估计数据与检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试判断(1)中所得的线性回归方程是否可靠?说明理由.
已知函数(1)求函数的单调区间;(2)求函数在区间上的最大值.(其中是自然对数的底数)
附加题以数列的任意相邻两项为坐标的点()都在一次函数的图象上,数列满足.(1)求证:数列是等比数列;(2)设数列,的前项和分别为,且,求的值.