(本小题满分13分)某隧道长2150m,通过隧道的车速不能超过m/s.一列有55辆车身长都为10m的同一车型的车队(这种型号的车能行驶的最高速为40m/s),匀速通过该隧道,设车队的速度为 m/s ,根据安全和车流的需要,当时,相邻两车之间保持20 m的距离;当时,相邻两车之间保持m的距离.自第1辆车车头进入隧道至第55辆车尾离开隧道所用的时间为. (I)将表示为的函数;(II)求车队通过隧道时间的最小值及此时车队的速度.
(本小题满分15分) 已知是椭圆的左、右顶点,,过椭圆的右焦点的直线交椭圆于点,交直线于点,且直线的斜率成等差数列,和是椭圆上的两动点,和的横坐标之和为2,(不垂直轴)的中垂线交轴与于点. (1)求椭圆的方程; (2)求的面积的最大值
(本小题满分15分) 已知二次函数满足条件: ①当时,,且; ②当时,; ③在R上的最小值为0 (1)求的解析式; (2)求最大的m(m>1),使得存在,只要,就有.
(本小题满分15分) 如图(1)所示,直角梯形中,,,,.过作于,是线段上的一个动点.将沿向上折起,使平面平面.连结,,(如图(2)). (Ⅰ)取线段的中点,问:是否存在点,使得平面?若存在,求出的长;不存在,说明理由; (Ⅱ)当时,求平面和平面所成的锐二面角的余弦值.
(本小题满分14分) 设△ABC的内角A、B、C所对的边长分别为A、B、C,且成等差数列 (1)求角A的值; (2)若,求的面积.
(本小题满分12分) 已知函数(e为自然对数的底数)在x=2处的切线斜率为 (I)求m的值; (Ⅱ)是否存在自然数^,使得函数在(k,k+l)内存在唯一的极值点?如果存在,求出k;如果 不存在,请说明理由; (Ⅲ)证明>0.