设椭圆的一个顶点与抛物线的焦点重合,分别是椭圆的左、右焦点,且离心率且过椭圆右焦点的直线与椭圆C交于两点.(1)求椭圆C的方程;(2)是否存在直线,使得.若存在,求出直线的方程;若不存在,说明理由.(3)若AB是椭圆C经过原点O的弦, MNAB,求证:为定值
(本小题满分为14分)定义在(-1,1)上的函数满足: ①对任意都有; ②在上是单调递增函数,. (1)求的值; (2)证明为奇函数; (3)解不等式.
(本小题满分13分).某商品在近30天内,每件的销售价格P(元)与时间t(天)的函数关系是: 该商品的日销售量Q(件)与时间(天)的函数关系是:Q=-t+40 (0<t≤30,), 求这种商品日销售金额的最大值,并指出日销售金额最大的一天是30天中的哪一天?
(本小题满分13分)已知函数 (1)画出函数的图象; (2)利用图象回答:当为何值时,方程有一个解?有两个解?有三个解?
(本小题满分13分)计算下列各式的值 ⑴ ; ⑵ .
(本小题满分13分).设全集U=R,集合, (1)求; (2)若集合=,满足,求实数的取值范围.