甲厂以 x 千克/小时的速度匀速生产某种产品(生产条件要求 1 ≤ x ≤ 10 ),每一小时可获得的利润是 100 ( 5 x + 1 - 3 x ) 元. (1)求证:生产 a 千克该产品所获得的利润为 100 a 5 + 1 x - 3 x 2 元; (2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求此最大利润.
(本小题满分10分) 已知p:≤2,q:x2-2x+1-m2≤0(m>0),若非p是非q的必要不充分条件,求实数m的取值范围.
(本小题满分12分) 已知x,y之间的一组数据如下表: (1)分别从集合A={1,3,6,7,8},B={1,2,3,4,5}中各取一个数x,y,求x+y≥10的概率; (2)对于表中数据,甲、乙两同学给出的拟合直线分别为y=x+1与y=x+,试根据残差平方和:(yi-i)2的大小,判断哪条直线拟合程度更好.
(本小题满分12分) 已知定义域为的函数同时满足以下三个条件: ①对任意的,总有; ②; ③若且,则有成立,则称为“友谊函数”。 (1)若已知为“友谊函数”,求的值; (2)函数在区间上是否为“友谊函数”?并给出理由; (3)已知为“友谊函数”,且 ,求证:。
(本小题满分12分) 已知在时有极值0. (1)求常数a、b的值; (2)求的单调区间.
(本小题满分12分) 如图,四棱锥P—ABCD中,ABCD为矩形,△PAD为等腰直角三角形,∠APD=90°,平面PAD⊥平面ABCD,E、F分别为PC和BD的中点. (1)证明:EF∥平面PAD; (2)证明:平面PDC⊥平面PAD.