已知向量 a = cos x , - 1 2 , b = 3 sin x , cos 2 x , x ∈ R , 设函数 f x = a · b . (Ⅰ) 求 f x 的最小正周期. (Ⅱ) 求 f x 在 0 , π 2 上的最大值和最小值.
已知a>0,函数f(x)=ax2-ln x.(1)求f(x)的单调区间;(2)当a=时,证明:方程f(x)=f 在区间(2,+∞)上有唯一解.
已知函数f(x)=x3+ax2+bx(a,b∈R).(1)当a=1时,求函数f(x)的单调区间;(2)若f(1)=,且函数f(x)在上不存在极值点,求a的取值范围.
已知函数f(x)=cos+2sin2x,x∈R.(1)求函数f(x)的最小正周期及对称轴方程;(2)当x∈时,求函数f(x)的最大值和最小值及相应的x值.
已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<π)的部分图像如图所示,(1)求ω,φ的值;(2)设g(x)=2f f-1,当x∈[0,]时,求函数g(x)的值域.
已知函数f(x)=.(1)求函数f(x)的定义域;(2)设α是第四象限的角,且tan α=-,求f(α)的值.