设a>0,b>0,a+b=1.(1)证明:ab+≥4;(2)探索猜想,并将结果填在以下括号内:a2b2+≥( );a3b3+≥( );(3)由(1)(2)归纳出更一般的结论,并加以证明.
已知命题方程在上有解,命题函数的值域为,若命题“或”是假命题,求实数的取值范围.
已知函数,其中是自然对数的底数,.(1)若,求曲线在点处的切线方程;(2)若,求的单调区间;(3)若,函数的图象与函数的图象有3个不同的交点,求实数的取值范围.
已知函数.(1)若是函数的极值点,求的值;(2)求函数的单调区间.
设函数,,函数的图象与轴的交点也在函数的图象上,且在此点有公切线.(Ⅰ)求,的值;(Ⅱ)试比较与的大小.
已知向量,,且,其中A、B、C是ABC的内角,分别是角A,B,C的对边。(Ⅰ)求角C的大小;(Ⅱ)求的取值范围;