设 { a n } 是首项为 a ,公差为 d 的等差数列( d ≠ 0 ), S n 是前 n 项和. 记 b n = n S n n 2 + c , n ∈ N + ,其中 c 为实数. (1)若 c = 0 ,且 b 1 , b 2 , b 4 成等比数列,证明: S n k = n 2 S k ( k , n ∈ N + ) ; (2)若 { b n } 是等差数列,证明 c = 0 .
设数列的前项和为,已知(1)设证明数列是等比数列;(2)求数列的通项公式;(3)求的前项和.
已知直线过点,圆:. (1)求截得圆弦长最长时的直线方程;(2)若直线被圆N所截得的弦长为,求直线的方程.
如图,在河的对岸可以看到两个目标物M,N,但不能到达,在河岸边选取相距40米的两个目标物P,Q两点,测得,,,,试求两个目标物M,N之间的距离.
(满分12分)如图,在正方体中,E、F、G分别为、、的中点,O为与的交点,(1)证明:面(2)求直线与平面所成角的正弦值.
(满分12分)求过两直线和的交点且与直线垂直的直线方程.