已知椭圆:的离心率,原点到过点,的直线的距离是.(1)求椭圆的方程; (2)若椭圆上一动点关于直线的对称点为,求 的取值范围;(3)如果直线交椭圆于不同的两点,,且,都在以为圆心的圆上,求的值.
已知双曲线的左,右焦点分别为,点P在双曲线的右支上,且,求此双曲线的离心率e的最大值.
已知双曲线C与双曲线-=1有公共焦点,且过点(3,2).求双曲线C的方程.
某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到了一声巨响,正东观测点听到的时间比其他两观测点晚4s. 已知各观测点到该中心的距离都是1020m. 试确定该巨响发生的位置.(假定当时声音传播的速度为340m/ s :相关各点均在同一平面上)
设是椭圆的两个焦点,是椭圆上一点,若,证明:的面积只与椭圆的短轴长有关
从椭圆上一点向轴引垂线,垂足恰为椭圆的左焦点,为椭圆的右顶点,是椭圆的上顶点,且.⑴求该椭圆的离心率.⑵若该椭圆的准线方程是,求椭圆方程.