如图甲,△ABC是边长为6的等边三角形,E,D分别为AB、AC靠近B、C的三等分点,点G为BC边的中点.线段AG交线段ED于F点,将△AED沿ED翻折,使平面AED⊥平面BCDE,连接AB、AC、AG形成如图乙所示的几何体。(1)求证BC⊥平面AFG;(2)求二面角B-AE-D的余弦值.
已知数列中.为实常数. (Ⅰ)若,求数列的通项公式; (Ⅱ)若.①是否存在常数求出的值,若不存在,请说明理由; ②设 .证明:n≥2时,.
已知函数. (Ⅰ)若不等式的解集为,,求的取值范围; (Ⅱ)若为整数,,且函数在上恰有一个零点,求的值; (Ⅲ)在(Ⅱ)的条件下,若函数对任意的x∈,有恒成立,求实数的最小值.
甲方是一农场,乙方是一工厂,由于乙方生产须占用甲方的资源,因此甲方每年向乙方索赔以弥补经济损失并获得一定净收入.乙方在不赔付甲方的情况下,乙方的年利润(元)与年产量(吨)满足函数关系.若乙方每生产一吨产品必须赔付甲方元(以下称为赔付价格). (Ⅰ)将乙方的年利润w (元)表示为年产量(吨)的函数,并求出乙方获得最大利润的年产量; (Ⅱ)甲方每年受乙方生产影响的经济损失金额(元),在乙方按照获得最大利润的产量进行生产的前提下,甲方要在索赔中获得最大净收入,应向乙方要求的赔付价格是多少?
已知圆:. (Ⅰ)直线过点,且与圆交于、两点,若,求直线的方程; (Ⅱ)过圆上一动点作平行于轴的直线,设与轴的交点为,若向量,求动点的轨迹方程,并说明此轨迹是什么曲线.
设函数f(x)=的定义域为A,函数g(x)=的值域为B. (Ⅰ)当m=2时,求A∩B; (Ⅱ)若“x∈A”是“x∈B”的必要不充分条件,求实数的取值范围.