某商区停车场临时停车按时段收费,收费标准为:每辆汽车一次停车不超过小时收费元,超过小时的部分每小时收费元(不足小时的部分按小时计算).现有甲、乙二人在该商区临时停车,两人停车都不超过小时.(1)若甲停车小时以上且不超过小时的概率为,停车付费多于元的概率为,求甲停车付费恰为元的概率;(2)若每人停车的时长在每个时段的可能性相同,求甲、乙二人停车付费之和为元的概率.
(本小题满分12分)设数列{an}的前n项和为Sn,且满足. (Ⅰ)求数列{an}的通项公式; (Ⅱ)若数列{bn}满足求.
已知函数. (Ⅰ)求不等式的解集; (Ⅱ)若关于的不等式恒成立,求实数的取值范围.
在直角坐标系中,半圆C的参数方程为(为参数,),以O为极点,x轴的非负半轴为极轴建立极坐标系. (Ⅰ)求C的极坐标方程; (Ⅱ)直线的极坐标方程是,射线OM:与半圆C的交点为O、P,与直线的交点为Q,求线段PQ的长.
如图,已知切⊙于点,割线交⊙于两点,∠的平分线和分别交于点. 求证:(1); (2)
设函数[K] (1)若与具有完全相同的单调区间,求的值; (2)若当时恒有求的取值范围.