(本小题满分16分)平面直角坐标系xoy中,直线截以原点O为圆心的圆所得的弦长为(1)求圆O的方程;(2)若直线与圆O切于第一象限,且与坐标轴交于D,E,当DE长最小时,求直线的方程;(3)设M,P是圆O上任意两点,点M关于x轴的对称点为N,若直线MP、NP分别交于x轴于点(m,0)和(n,0),问mn是否为定值?若是,请求出该定值;若不是,请说明理由。
一条河的两岸平行,河的宽度m,一艘船从处出发到河对岸.已知船的速度km/h,水流速度km/h.要使船行驶的时间最短,那么船行驶的距离与合速度的比值必须最小.此时我们分三种情况讨论: (1)当船逆流行驶,与水流成钝角时; (2)当船顺流行驶,与水流成锐角时; (3)当船垂直于对岸行驶,与水流成直角时. 请同学们计算上面三种情况,是否当船垂直于对岸行驶时,与水流成直角时,所用时间最短
设,是平面内一组基底,证明:当时,恒有.
如图,已知,,任意点关于点的对称点为,点关于点的对称点为,用、表示向量.
如图,连接平行四边形的一个顶点至、边的中点、,、分别与交于、两点,你能发现、、之间的关系吗?
以初速度,抛射角投掷铅球,求铅球上升的最大高度和最大投掷距离.