(本小题满分14分)现有一张长为80cm,宽为60cm的长方形铁皮ABCD,准备用它做成一只无盖长方体铁皮盒,要求材料利用率为100%,不考虑焊接处损失。如图,若长方形ABCD的一个角剪下一块铁皮,作为铁皮盒的底面,用余下材料剪拼后作为铁皮盒的侧面,设长方体的底面边长为x (cm),高为y (cm),体积为V (cm3)(1)求出x 与 y 的关系式;(2)求该铁皮盒体积V的最大值;
当实数取何值时,复数 (Ⅰ)是纯虚数; (Ⅱ)在复平面内表示的点位于直线上.
(本小题满分10分) 设,函数. (Ⅰ) 若是函数的极值点,求实数的值; (Ⅱ)求函数在区间上的最大值和最小值; (Ⅲ)若函数在上是单调递减函数,求实数的取值范围.
(本小题满分10分) 已知数列的前项和为,,满足. (Ⅰ) 计算,,,; (Ⅱ)求的通项公式.
(本小题满分10分) 摆地摊的某摊主拿了个白的,个黑的围棋子放在一个口袋里,并规定凡愿意摸彩者每人交一元钱作手续费,然后一次从口袋摸出个棋子,中彩情况如下:
(Ⅰ) 某人交一元钱作手续费,然后一次从口袋摸出个棋子,求获得彩金元的概率; (Ⅱ)某人交一元钱作手续费,然后一次从口袋摸出个棋子,求无任何奖品的概率; (Ⅲ)按摸彩次统计,摊主可望净赚约多少钱?(精确到个位)
(本小题满分10分) 已知展开式中所有项的二项式系数之和为,求该展开式中系数最大的项.