在内,分别为角所对的边,成等差数列,且.(Ⅰ)求的值;(Ⅱ)若,求的值。
为贯彻“激情工作,快乐生物”的理念,某单位在工作之余举行趣味知识有奖竞赛,比赛分初赛和决赛两部分,为了增加节目的趣味性,初赛采用选手选—题答—题的方式进行,每位选手最多有5次选答题的机会,选手累计答对3题或答错3题即终止其初赛的比赛,答对3题者直接进入决赛,答错3题者则被淘汰,已知选手甲答题的正确率为. (1)求选手甲答题次数不超过4次可进入决赛的概率; (2)设选手甲在初赛中答题的个数,试写出的分布列,并求的数学期望。
已知函数,. (1)求的值; (2)设、,,,求的值.
已知函数. (I)若,求函数的单调区间; (Ⅱ)求证: (Ⅲ)若函数的图象在点处的切线的倾斜角为,对于任意的,函数是的导函数)在区间上总不是单调函数,求的取值范围。
已知数列中,且点在直线上。 (1)求数列的通项公式; (2)若函数求函数的最小值; (3)设表示数列的前项和.试问:是否存在关于的整式,使得对于一切不小于2的自然数恒成立?若存在,写出的解析式,并加以证明;若不存在,试说明理由。
如图,海上有两个小岛相距10,船O将保持观望A岛和B岛所成的视角为,现从船O上派下一只小艇沿方向驶至处进行作业,且.设。 (1)用分别表示和,并求出的取值范围; (2)晚上小艇在处发出一道强烈的光线照射A岛,B岛至光线的距离为,求BD的最大值.