(本小题满分14分)直线与椭圆交于,两点,已知,,若且椭圆的离心率,又椭圆经过点,为坐标原点.(1)求椭圆的方程;(2)若直线过椭圆的焦点(为半焦距),求直线的斜率的值;(3)试问:的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
(本小题满分13分) 设函数. (1)求证:不论为何实数总为增函数; (2)确定的值,使为奇函数及此时的值域.
(本小题满分13分) 为了预防甲型流感,某学校对教室用药熏消毒法进行消毒. 已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为(a为常数),如图所示,根据图中提供的信息,回答下列问题: (1)求从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式; (2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过多少小时后,学生才能回到教室.
(本小题满分12分) 设函数,如果,求的取值范围.
(本小题满分12分) 已知函数 (1)当时,求函数的最大值和最小值; (2)求实数的取值范围,使在区间上是单调减函数
(本小题满分12分) 已知集合A={x|x≤a+3},B={x|x<-1或x>5} (1) 若;(2) 若,求a的取值范围