设,且.(1)求的值及的定义域;(2)求在区间[0,]上的最大值.
在如图所示的多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,且AC=AD=CD=DE=2,AB=1.(Ⅰ)请在线段CE上找到点F的位置,使得恰有直线BF∥平面ACD,并证明这一事实;(Ⅱ)求多面体ABCDE的体积.
已知函数.(Ⅰ)时,求函数的定义域;(Ⅱ)若关于的不等式的解集是R,求的取值范围.
在△ABC中,角、、所对的边分别为、、,已知向量,且.(Ⅰ) 求角A的大小;(Ⅱ) 若,,求△ABC的面积.
已知点,参数,点Q在曲线C:上.(Ⅰ)求点P的轨迹方程与曲线C的直角坐标方程;(Ⅱ)求点P与点Q之间的最小值.
已知函数.(1)讨论函数的单调性;(2)若函数的最小值为,求的最大值;(3)若函数的最小值为,为定义域内的任意两个值,试比较 与的大小.