((本题15分)已知直线l的方程为,且直线l与x轴交点,圆与x轴交两点.(1)过M点的直线交圆于两点,且圆孤恰为圆周的,求直线的方程;(2)求以l为准线,中心在原点,且与圆O恰有两个公共点的椭圆方程;(3)过M点作直线与圆相切于点,设(2)中椭圆的两个焦点分别为,求三角形面积.
某公司生产陶瓷,根据历年的情况可知,生产陶瓷每天的固定成本为14000元,每生产一件产品,成本增加210元.已知该产品的日销售量与产量件之间的关系式为: ,每件产品的售价与产量之间的关系式为: .(Ⅰ)写出该陶瓷厂的日销售利润与产量之间的关系式;(Ⅱ)若要使得日销售利润最大,每天该生产多少件产品,并求出最大利润.
已知 (mR)(Ⅰ)当时,求函数在上的最大,最小值。(Ⅱ)若函数在上单调递增,求实数的取值范围;
在△ABC中,、、分别是角、、的对边,且.(Ⅰ)求角的大小;(Ⅱ)若,求△ABC的面积.
函数是定义在(-1,1)上的单调递增的奇函数,且(Ⅰ)求函数的解析式;(Ⅱ)求满足的的范围;
已知函数且对于任意实数恒成立。(1)求的值;(2)求函数的最大值和单调递增区间。