函数是定义在(-1,1)上的单调递增的奇函数,且(Ⅰ)求函数的解析式;(Ⅱ)求满足的的范围;
(本小题共14分)正方体的棱长为,是与的交点,是上一点,且.(Ⅰ)求证:平面;(Ⅱ)求异面直线与所成角的余弦值;(Ⅲ)求直线与平面所成角的正弦值.
(本小题共12分)
如图,在平面直角坐标系中,以轴为始边作两个锐角,它们的终边分别与单位圆交于两点.已知的横坐标分别为.
(本小题共14分)设函数().(Ⅰ)当时,求的极值;(Ⅱ)当时,求的单调区间.
(本小题共13分)某学校高一年级开设了五门选修课.为了培养学生的兴趣爱好,要求每个学生必须参加且只能选修一门课程.假设某班甲、乙、丙三名学生对这五门课程的选择是等可能的.(Ⅰ)求甲、乙、丙三名学生参加五门选修课的所有选法种数;(Ⅱ)求甲、乙、丙三名学生中至少有两名学生选修同一门课程的概率;(Ⅲ)设随机变量为甲、乙、丙这三名学生参加课程的人数,求的分布列与数学期望.