如图,在矩形中,分别为四边的中点,且都在坐标轴上,设,.(Ⅰ)求直线与的交点的轨迹的方程;(Ⅱ)过圆上一点作圆的切线与轨迹交于两点,若,试求出的值.
已知函数. (Ⅰ)求的极值; (II)判断y=f(x)的图像是否是中心对称图形,若是求出对称中心并证明,否则说明理由; (III)设的定义域为,是否存在.当时,的取值范围是?若存在,求实数、的值;若不存在,说明理由
已知椭圆的左、右焦点分别为F1、F2,短轴端点分别为A、B,且四边形F1AF2B是边长为2的正方形 (I)求椭圆的方程; (II)若C、D分别是椭圆长轴的左、右端点,动点M满足,连结CM交椭圆于P,证明为定值(O为坐标原点); (III)在(II)的条件下,试问在x轴上是否存在异于点C的定点Q,使以线段MP为直径的圆恒过直线DP、MQ的交点,若存在,求出Q的坐标,若不存在,说明理由
某投资公司在2010年年初准备将1000万元投资到“低碳”项目上,现有两个项目供选择: 项目一:新能源汽车.据市场调研,投资到该项目上,到年底可能获利,也可能亏损,且这两种情况发生的概率分别为和; 项目二:通信设备.据市场调研,投资到该项目上,到年底可能获利,可能亏损,也可能不赔不赚,且这三种情况发生的概率分别为、和 (Ⅰ)针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由; (Ⅱ)若市场预期不变,该投资公司按照你选择的项目长期投资(每一年的利润和本金继续用作投资),问大约在哪一年的年底总资产(利润+本金)可以翻一番? (参考数据:,)
如图的多面体是底面为平行四边形的直四棱柱ABCD—,经平面AEFG 所截后得到的图形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60 (I)求证:BD⊥平面ADG;(Ⅱ)求平面AEFG与平面ABCD所成锐二面角的余弦值.
已知=(cosx+sinx,sinx),=(cosx-sinx,2cosx), (Ⅰ)求证:向量与向量不可能平行;(Ⅱ)若f(x)=·,且x∈[-,]时,求函数f(x)的最大值及最小值