在△ABC中,角A,B,C所对边分别为a,b,c,且.(Ⅰ)求角A;(Ⅱ)若m,n,试求|mn|的最小值.
(本小题满分12分)数列:满足(1) 设,求证是等比数列;(2) 求数列的通项公式;(3) 设,数列的前项和为,求证:
(本小题满分12分)设F是椭圆C:的左焦点,直线l为其左准线,直线l与x轴交于点P,线段MN为椭圆的长轴,已知.(1) 求椭圆C的标准方程;(2) 若过点P的直线与椭圆相交于不同两点A、B求证:∠AFM =∠BFN.
(本小题满分12分) 如图,在四棱锥P—ABCD中,底面ABCD是矩形,已知AB = 3,AD = 2,PA = 2,,. (1) 证明:AD⊥平面PAB; (2) 求异面直线PC与AD所成的角的大小; (3) 求二面角P—BD—A的大小.
(本小题满分13分)已知函数的导数.a,b为实数,.(1) 若在区间上的最小值、最大值分别为、1,求a、b的值;(2) 在 (1) 的条件下,求曲线在点P(2,1)处的切线方程.
(本小题满分13分)有A、B、C、D、E共5个口袋,每个口袋装有大小和质量均相同的4个红球和2个黑球,现每次从其中一个口袋中摸出3个球,规定:若摸出的3个球恰为2个红球和1个黑球,则称为最佳摸球组合.(1) 求从口袋A中摸出的3个球为最佳摸球组合的概率;(2) 现从每个口袋中摸出3个球,求恰有3个口袋中摸出的球是最佳摸球组合的概率.