已知:圆过椭圆的两焦点,与椭圆有且仅有两个公共点:直线与圆相切 ,与椭圆相交于A,B两点记 (Ⅰ)求椭圆的方程;(Ⅱ)求的取值范围;(Ⅲ)求的面积S的取值范围.
设函数()(是一个无理数)(1)若函数在定义域上不是单调函数,求a的取值范围;(2)设函数的两个极值点为和,记过点、的直线的斜率为k,是否存在a, 使得?若存在,求出a的取值集合;若不存在,请说明理由.
如图,椭圆 ()的离心率,短轴的两个端点分别为B1、B2,焦点为F1、F2,四边形F1 B1F2 B2的内切圆半径为(1)求椭圆C的方程;(2)过左焦点F1的直线交椭圆于M、N两点,交直线于点P,设,,试证为定值,并求出此定值.
如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD(1)证明:PA⊥BD;(2)设PD=AD,求二面角A-PB-C的余弦值.
设为数列的前n项的和,已知,,(1)求、,并求数列的通项公式;(2)求数列的前n项和.
如图,在平面四边形ABCD中,、、,(1)求的值;(2)若,,求BC的长.