甲,乙两人进行射击比赛,每人射击次,他们命中的环数如下表:
(Ⅰ)根据上表中的数据,判断甲,乙两人谁发挥较稳定;(Ⅱ)把甲6次射击命中的环数看成一个总体,用简单随机抽样方法从中抽取两次命中的环数组成一个样本,求该样本平均数与总体平均数之差的绝对值不超过的概率.
已知 (1)当时,求的极大值点; (2)设函数的图象与函数的图象交于、两点,过线段的中点做轴的垂线分别交、于点、,证明:在点处的切线与在点处的切线不平行.
已知椭圆(a>b>0)的离心率为,且过点(). (1)求椭圆E的方程; (2)设直线l:y=kx+t与圆(1<R<2)相切于点A,且l与椭圆E只有一个公共点B. ①求证:; ②当R为何值时,取得最大值?并求出最大值.
学生的数学学习水平按成绩可分成8个等级,等级系数X依次为1,2, ,8,其中为标准A,为标准B.已知甲学校执行标准A考评学生,学生平均用于数学的学习时间为3.5小时/天;乙学校执行标准B考评学生,学生平均用于数学的学习时间为2.5小时/天.假定甲、乙两学校都符合相应的执行标准. (1)已知甲学校学生的数学学习水平的等级系数X1的概率分布列如下所示:
且X1的数学期望EX1=6,求a、b的值; (2)为分析乙学校学生的数学学习水平的等级系数X2,从该校随机选取了30名学生,相应的等级系数组成一个样本,数据如下: 3533855634 6347534853 8343447567 用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数X2的数学期望; (3)在(1)、(2)的条件下,哪个学校的数学学习效率更高?说明理由. (注:)
平行四边形中,,,且,以BD为折线,把△ABD折起,,连接AC. (1)求证:; (2)求二面角B-AC-D的大小.
设△ABC的内角A、B、C所对的边长分别为a、b、c,且 (1)求角A的大小; (2)若角边上的中线AM的长为,求△ABC的面积.