甲,乙两人进行射击比赛,每人射击次,他们命中的环数如下表:
(Ⅰ)根据上表中的数据,判断甲,乙两人谁发挥较稳定;(Ⅱ)把甲6次射击命中的环数看成一个总体,用简单随机抽样方法从中抽取两次命中的环数组成一个样本,求该样本平均数与总体平均数之差的绝对值不超过的概率.
已知a=(3,4),b=(4,3),求x、y的值使(xa+yb)⊥a,且|xa+yb|=1.
已知向量a=,b=(sinx,cos2x),x∈R,设函数f(x)=a·b. (1)求f(x)的最小正周期. (2)求f(x)在上的最大值和最小值.
已知向量a=(cosλθ,cos(10-λ)θ),b=(sin(10-λ)θ,sinλθ),λ、θ∈R. (1)求|a|2+|b|2的值; (2)若a⊥b,求θ; (3)若θ=,求证:a∥b.
设△ABC的内角A,B,C所对的边分别为a,b,c,且a+c=6,b=2,cosB=. (1)求a,c的值; (2)求sin(A-B)的值.
在△ABC中,角A,B,C所对的边分别为a,b,c,且(2a+c)··+c·=0. (1)求角B的大小; (2)若b=2,试求·的最小值.