已知函数,g(x)=,a,b∈R.(1)求函数f(x)的单调区间;(2)记函数h(x)=f(x)+g(x),当a=0时,h(x)在(0,1)上有且只有一个极值点,求实数b的取值范围;(3)记函数F(x)=|f(x)|,证明:存在一条过原点的直线l与y=F(x)的图象有两个切点.
有定点及定直线,是上在第一象限内的点,交轴的正半轴于点,问点在什么位置时,的面积最小,并求出最小值.
若直线沿轴向左平移3个单位,再沿轴向上平移1个单位后,回到原来的位置,试求直线的斜率.
已知中,顶点,,的平分线的方程是.求顶点的坐标.
等腰三角形的顶点的坐标是,底边一个端点的坐标是,求另一个端点的轨迹方程,并说明它是什么图形.
掷一枚均匀的硬币10次,求出现正面的次数多于反面次数的概率.