已知函数,g(x)=,a,b∈R.(1)求函数f(x)的单调区间;(2)记函数h(x)=f(x)+g(x),当a=0时,h(x)在(0,1)上有且只有一个极值点,求实数b的取值范围;(3)记函数F(x)=|f(x)|,证明:存在一条过原点的直线l与y=F(x)的图象有两个切点.
已知函数的图象过的定点在函数的图象上,其中m、n为正数,求的最小值。
若数列中,点在函数的图像上,(1)求数列的通项公式;(2)求数列的前n项和.
已知函数在区间上有最大值3,最小值,试求和的值
已知定义在上的奇函数, 当时, .(1)求函数在上的解析式;(2)试用函数单调性定义证明:在上是减函数;(3)要使方程,在上恒有实数解,求实数的取值范围.
已知函数 (1)函数的图象可由的图象经过怎 样的平移和伸缩变换得到;(2)设,是否存在实数,使得函数在R上的最小值是?若存在,求出对应的值;若不存在,说明理由.