(本小题满分10分)如图,在中,为AC边上的高,沿BD将翻折,使得得到几何体 (I)求证:AC^平面BCD; (Ⅱ)求异面直线AB与CD所成角的正切值.
袋子中装有大小形状完全相同的m个红球和n个白球,其中m,n满足m>n≥2且m+n≤l0(m,n∈N+),若从中取出2个球,取出的2个球是同色的概率等于取出的2个球是异色的概率.(Ⅰ) 求m,n的值;(Ⅱ) 从袋子中任取3个球,设取到红球的个数为,求的分布列与数学期望.
设函数.(Ⅰ) 当时,求的单调区间;(Ⅱ) 若在上的最大值为,求的值.
设,求下列各式的值:(Ⅰ) ; (Ⅱ); (Ⅲ).
已知数列的前项的和为,是等比数列,且,。⑴求数列和的通项公式;⑵设,求数列的前项的和。⑵ ,数列的前项的和为,求证:.
甲船由岛出发向北偏东的方向作匀速直线航行,速度为海里∕小时,在甲船从岛出发的同时,乙船从岛正南海里处的岛出发,朝北偏东的方向作匀速直线航行,速度为海里∕小时。⑴求出发小时时两船相距多少海里?⑴ 两船出发后多长时间相距最近?最近距离为多少海里?