如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD是平行四边形,且AC⊥CD,PA=AD,M,Q分别是PD,BC的中点.(1)求证:MQ∥平面PAB;(2)若AN⊥PC,垂足为N,求证:MN⊥PD.
如图所示,在等腰梯形ABCD中,AB=2DC=2,∠DAB=60°,E为AB的中点,将△ADE与△BEC分别沿ED、EC向上折起,使A、B重合,求形成的三棱锥的外接球的体积.
如图所示,长方体ABCD—A′B′C′D′中,用截面截下一个棱锥C—A′DD′, 求棱锥C—A′DD′的体积与剩余部分的体积之比.
如图所示,半径为R的半圆内的阴影部分以直径AB所在直线为轴,旋转一周得到一几何体,求该几何体的表面积(其中∠BAC=30°)及其体积.
如图所示,长方体ABCD-A1B1C1D1中,AB=a,BC=b,BB1=c,并且a>b>c>0.求沿着长方体的表面自A到C1 的最短线路的长.
如图所示的几何体中,四边形AA1B1B是边长为3的正方形,CC1=2,CC1∥AA1,这个几何体是棱柱吗?若是,指出是几棱柱.若不是棱柱,请你试用一个平面截去一部分,使剩余部分是一个棱长为2的三棱柱,并指出截去的几何体的特征,在立体图中画出截面.