选修4-2:矩阵与变换 已知矩阵,向量,(Ⅰ)求矩阵A的特征值和对应的特征向量;(Ⅱ)求向量,使得.
函数f(x)=的定义域为A,函数g(x)=的定义域为B。(1)求A;(2)若BA,求实数a的取值范围。
已知函数, (1)当时,解不等式;(2)若存在,使得成立,求实数的取值范围.
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的x轴的正半轴重合.设点O为坐标原点, 直线(参数)与曲线的极坐标方程为 (1)求直线l与曲线C的普通方程;(2)设直线l与曲线C相交于A,B两点,证明:0.
如图,AB是⊙O的直径,弦BD、CA的延长线相交于点E,EF垂直BA的延长线于点F. 求证: (1);(2)
已知函数f (x)=lnx,g(x)=ex.(1)若函数φ (x) =" f" (x)-,求函数φ (x)的单调区间;(2)设直线l为函数的图象上一点A(x0,f (x0))处的切线.证明:在区间(1,+∞)上存在唯一的x0,使得直线l与曲线y=g(x)相切.