已知函数f (x)=lnx,g(x)=ex.(1)若函数φ (x) =" f" (x)-,求函数φ (x)的单调区间;(2)设直线l为函数的图象上一点A(x0,f (x0))处的切线.证明:在区间(1,+∞)上存在唯一的x0,使得直线l与曲线y=g(x)相切.
解不等式:|2x-1|-|x-2|<0.
已知|x-a|<b(a、b∈R)的解集为{x|2<x<4},求a-b的值.
解不等式:3≤|5-2x|<9.
解不等式:|x+1|>3.
已知直线C1:(t为参数),C2:(θ为参数). (1)当α=时,求C1与C2的交点坐标; (2)过坐标原点O作C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.