国家教育部规定“中小学生每天在校体育活动时间不低于1小时”.某中学为了了解学生体育活动情况,随机抽查了520名毕业班学生,调查内容是:“每天锻炼是否超过1小时及未超过1小时的原因”.以下是根据所得的数据制成的统计图的一部分.根据以上信息,解答下列问题: (1)该校随机抽查的学生中每天在校锻炼时间超过1小时的人数是 ; (2)请将图2补充完整; (3)2013年该市初中毕业生约为6.4万人,请你估计今年该市初中毕业生中每天锻炼时间超过1小时的学生约有多少万人?
应用无刻度的直尺画图: 在下面的三个图中,以OA为边,在正方形网格内作∠AOB=α,B点为格点(每个小正方形的顶点)使sinα的值分别为:,和.
解不等式组并把解集在数轴上表示出来:.
如图,抛物线y=(x+m)2+m,与直线y=﹣x相交于E,C两点(点E在点C的左边),抛物线与x轴交于A,B两点(点A在点B的左边).△ABC的外接圆⊙H与直线y=﹣x相交于点D. (1)若抛物线与y轴的交点坐标为(0,2),求m的值; (2)求证:⊙H与直线y=1相切; (3)若DE=2EC,求⊙H的半径.
如图,△ABC为等边三角形.O为BC的中垂线AH上的动点,⊙O经过B,C两点,D为弧上一点,D,A两点在BC边异侧,连接AD,BD,CD. (1)如图1,若⊙O经过点A,求证:BD+CD=AD; (2)如图2,圆心O在BD上,若∠BAD=45°;求∠ADB的度数; (3)如图3,若AH=OH,求证:BD2+CD2=AD2.
某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100﹣x)件.设这段时间内售出该商品的利润为y元. (1)直接写出利润y与售价x之间的函数关系式; (2)当售价为多少元时,利润可达1000元; (3)应如何定价才能使利润最大?